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Abstract

In Section B.1 we provide additional results on the linear Gaussian model with common factor and con-

tagion. In Section B.2 we give additional identification results for the semiparametric setting. Finally, in

Section B.3 we derive the GMM semiparametric efficiency boundfrom cross-differencing and illustrate

our findings for the Poisson count model with stochastic timeeffects. Equation numbers(n) and(a.n) for

n = 1, 2, ... refer to the main body and Appendix A of the paper, respectively.
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B.1 Additional results for the linear Gaussian model with common

factor and contagion

In this section we provide results for the structural VAR model in Example 2 concerning the link between

the nonlinear moment restrictions and the Yule-Walker equations (Subection B.1.1) and model parameters

estimation in the homoskedastic setting (Subsection B.1.2).

B.1.1 Link with Yule-Walker equations

We show that the nonlinear moment restrictions (a.1)-(a.3)are well-chosen (parameter-dependent) linear

combinations of the Yule-Walker equations for the structural VAR model (4.1). The Yule-Walker equations

involving the covariance functionΓ0(h) = Cov0(yt, yt−h), for h = 0, 1, 2, ... of the observable process are

derived by multiplying the first equation in system (4.1) byy′t, y
′

t−1, y
′

t−2, ..., respectively, and computing

the expectation on both sides. We get:

Γ0(0) = B∆0(0) + CΓ0(1)
′ + Σ, (b.1)

Γ0(1) = B∆0(1) + CΓ0(0), (b.2)

Γ0(h) = B∆0(h) + CΓ0(h− 1), h ≥ 2, (b.3)

where∆0(h) = Cov0(ft, yt−h) is the cross-covariance function of processes(ft) and(yt). These covari-

ances are not directly nonparametrically identifiable fromthe data. However, some linear combinations of

the Yule-Walker equations (b.1)-(b.3) do not involve the unidentifiable covariances∆0(h). To see this, let

us multiply the first equation in system (4.1) byf ′

t+h, for h = 0, 1, 2, ... and compute the expectation, to

get:

∆0(h)
′ = B(Φ′)h + C∆0(h+ 1)′, h = 0, 1, 2, ... (b.4)

Then, by considering equation (b.1), subtracting equation(b.2) post-multiplied byC ′, and using equation

(b.4) withh = 0, we get:

Γ0(0)− Γ0(1)C
′ = CΓ0(1)

′ − CΓ0(0)C
′ + BB′ + Σ,

i.e., the first-order nonlinear moment restriction (a.1). Similarly, by considering equation (b.2), subtracting

equation (b.3) forh = 2 post-multiplied byC ′, and using equation (b.4) withh = 1, we get:

Γ0(1)− Γ0(2)C
′ = CΓ0(0)− CΓ0(1)C

′ + BΦB′,
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i.e., the second-order nonlinear moment restriction (a.2). The third-order nonlinear moment restrictions

are obtained in an analogous manner as a linear combination of the equations in (b.3) forh = 2 andh = 3.

B.1.2 Consistent estimation from first-order nonlinear restrictionsin the homoskedas-

tic case

Let us consider the model with static factor, i.e.Φ = 0, and assumeΣ0 = σ2
0Idn in (4.1), i.e. the

innovations of the measurement equation are independent and homoskedastic. In Section 4.1 we show that

the parameters are identifiable from the identified setE0. The proof of identifiability suggests a consistent

estimation method. Let us denoteGT (σ
2, B, C) a criterion based on moment restrictions (4.3) such that

GT tends to a nondegenerate limitG∞, say, when the sample sizeT tends to infinity. Due to the lack of

first-order identifiability (Corollary 1), the moment estimator defined by:

(σ̂2
T , B̂T , ĈT ) = argmin

σ2,B,C

GT (σ
2, B, C),

where the minimization is such that matrixB′B is diagonal, converges forT large towards the setE0,
but not necessarily to the true value of the parameter(σ2

0, B0, C0). Corollary 2 suggests how to modify

the optimization criterion to recover consistency. Let us recall that two symmetric matrices of the same

dimensionA0 andA1 are orderedA0 � A1 if, and only if, their ranked eigenvaluesλ1(A) ≥ · · · ≥ λK(A)

are such that:λj(A0) ≥ λj(A1), for all j = 1, ..., K. Thus, to get the consistency, the estimation criterion

has to be penalized:

(σ̂2
T , B̂T , ĈT ) = argmin

σ2,B,C

{
GT (σ

2, B, C) + αT

[
σ2 + λ1(BB

′) + · · ·+ λK(BB
′)
]}

= argmin
σ2,B,C

{
GT (σ

2, B, C) + αT

[
σ2 + Tr(BB′)

]}
,

where the minimization is such that matrixB′B is diagonal and the positive weightαT tends to0 at an

appropriate speed whenT tends to infinity. The study of the properties of such an estimator is beyond the

scope of this paper.

B.2 Additional results for semi-parametric identification

In this section we first consider the multivariate Poisson model with stochastic intensity, and provide

a discussion of Assumption 1 (Subsection B.2.1) and show how semi-parametric identification can be
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achieved by cross-differencing (Subsection B.2.2). Then, we provide identification results from third-

order nonlinear moment restrictions in a general semi-parametric setting (Subsection B.2.3).

B.2.1 Discussion of Assumption 1 in the multivariate Poisson model with stochastic

intensity

Let us consider Assumption 1 in the multivariate Poisson model with stochastic intensity. We show two

properties stated in Section 5.2 of the main body. Recall thatψf (w, w̃) := logE0[exp(w
′ft + w̃′ft−1)].

Property B.1: When the factor is one-dimensional, and if function
∂2ψf

∂w∂w̃
is analytic in a neighbourhood

of 0 in the complex domain, then Assumption 1 is equivalent to: Process(ft) is not i.i.d.

Proof: ForK = 1, Condition (5.7) in Assumption 1 is equivalent to:
∂2ψf (w, w̃)

∂w∂w̃
6= 0, for somew, w̃ ∈

W, for any neighbourhoodW of 0. The negation of this statement is:
∂2ψf (w, w̃)

∂w∂w̃
= 0, for allw, w̃ ∈ W,

in a neighbourhoodW of 0. Now, we use that a complex analytic function vanishing on anopen domain

vanishes everywhere. Hence,
∂2ψf (w, w̃)

∂w∂w̃
= 0, for all w, w̃. This is equivalent to the fact that functionψf

is additive in its two arguments:ψf (w, w̃) = ψf (w, 0)+ψf (0, w̃). In turn, this is equivalent toft andft−1

being independent, i.e., to Markov process(ft) being i.i.d.

Property B.2: When the factor is multidimensional, and if function
∂2ψf

∂w∂w̃′
is analytic in a neighbourhood

of 0 in the complex domain, then Assumption 1 is implied by the following condition:

If η′ft andη′ft−1 are independent, for aη ∈ R
K , thenη = 0. (b.5)

Proof: Assume condition (b.5) holds. We have to prove that Assumption 1 is valid. Obviously,(ft)

cannot be an i.i.d. process. So, we only have to show condition (5.7) in Assumption 1. LetW be a

neighbourhood of0. To show (5.7), we prove the implication in reversed order ofthe negative statements,

i.e., let us suppose thatη ∈ R
K is not the zero vector and show that thenη′

∂2ψf (w, w̃)

∂w∂w̃′
η 6= 0 for some

w, w̃ ∈ W. Suppose the latter property is not true, i.e.

η′
∂2ψf (w, w̃)

∂w∂w̃′
η = 0, ∀w, w̃ ∈ W . (b.6)

Consider the processgt := η′ft. The log joint Laplace transform of(gt, gt−1) is

ψη
g (u, v) := logE[exp(ugt + vgt−1)] = ψf (uη, vη). (b.7)
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Thus:
∂2ψη

g (u, v)

∂u∂v
= η′

∂2ψf (uη, vη)

∂w∂w̃′
η. (b.8)

From (b.6) it follows that
∂2ψη

g (u, v)

∂u∂v
= 0 for u, v in a small neighbourhood of0. By the arguments in the

proof of Property B.1, it follows thatgt = η′ft andgt−1 = η′ft−1 are independent. However, by condition

(b.5), this is not possible and thus (b.6) is not true.

B.2.2 Identification of the multivariate Poisson model with stochastic intensity via

cross-differencing

The first-order nonlinear cross-differencing approach presented in Section 6 for a panel data framework is

applicable to multivariate time series (corresponding to asingle “individual” only), where the heterogene-

ity of the factor sensitivities is not observable and involves unknown parameters. To illustrate this fact, let

us consider the multivariate Poisson model with common stochastic intensity introduced in Section 5.2,

with a single unobservable factor. Equation (6.2) reads in this case:

E
[
exp(uyi,t)|yt−1, ft

]
= exp {(eu − 1)βift} ∀i, ∀u ∈ U .

With a change of variablev = (eu − 1)βi, we get:

E
[
exp{log(1 + v/βi)yi,t}|yt−1, ft

]
= exp {vft} ∀i, ∀v ∈ V .

Assuming that the factor loading for the first individual is not zero, we setβ1 = 1 as a normalization

condition. Thus, after applying the cross-differencing approach and integrating out the latent factor from

the conditioning set, we get for any pair(i, 1), with i = 2, 3, ..., n, the conditional moment restrictions:

E
[
exp{log(1 + v/βi)yi,t} − exp{log(1 + v)y1,t}|yt−1

]
, ∀i = 2, 3, ..., n, ∀v ∈ V . (b.9)

This continuum of nonlinear moment restrictions can be usedto identify the loadings parameters.

B.2.3 Identification from third-order nonlinear restrictions

Let us consider the general semi-parametric framework of Assumptions A.1-A.3. If the regression pa-

rameters and the transition p.d.f. of the latent factor are not second-order nonlinearly identifiable, the
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information in third-order restrictions can be exploited for identification. An approach similar to the one

presented in Section 5.1 can be pursued. We present here an alternative approach relying on the im-

plication of the Markovianity assumption on the latent factor (conditional on the covariates). For any

given value(B,C, θ) of the regression parameters, the system of first-order nonlinear moment restrictions

(3.3) allows to compute by Fourier inversion the conditional distribution 1 of ft givenxt. Similarly, for

any given(B,C, θ), the second- and third-order moment restrictions (3.6) and(3.8) allow to compute by

Fourier inversion the conditional distributions of(ft, ft−1) givenxt, and of(ft, ft−1, ft−2) givenxt, respec-

tively. In particular, we can compute the conditional transition of the unobserved component at horizon 1:

g1(ft|ft−1, xt;B,C, θ), and the conditional transition at horizon 2:g2(ft|ft−2, xt;B,C, θ), say, for given

B,C, θ. When evaluated for the true value of the parameters(B0, C0, θ0), these functions are equal to the

true conditional transition functions of the latent factorprocess at horizons1 and2, respectively. By the

Markov Assumption A.3, we get the Kolmogorov relationship:

g2(f |f̃ , xt;B,C, θ) =
∫
g1(f |ft−1, xt;B,C, θ)g1(ft−1|f̃ , xt;B,C, θ)dft−1, ∀f, f̃ , ∀xt, (b.10)

for the true value of the regression parametersB,C, θ. This relatioship yields an infinite number of

nonlinear restrictions indexed by the admissible values off , f̃ , xt. Under the assumption that (b.10)

holds for the true value of the regression parametersB0, C0, θ0 only, this condition can be used to identify

B0, C0, θ0.

B.3 GMM efficiency bounds and cross-differencing

In semi-parametric panel data models with cross-differencing (Section 6), the parameters of interest are

identified by a continuum of conditional moment restrictions:

E[ht(β, u)|yt−1, xt] = 0, ∀u ∈ U, say, (b.11)

where functionht, with dimensiondim(ht) = d, depends on the observable variablesyt, xt, vectorβ with

dimensiondim(β) = p includes the parameters of the affine nonlinear regression modelB, C, θ, andU

1When(B,C, θ) is the true parameter value(B0, C0, θ0), the resulting function is the true conditional density offt given

xt. When(B,C, θ) is not the true parameter value, the resulting functionl(ft|xt;B,C, θ), say, may not be a density. The

same remark applies for functionsl(ft, ft−1|xt;B,C, θ) and l(ft, ft−1, ft−2|xt;B,C, θ) obtained using second- and third-

order restrictions. This fact is not a problem for our identification strategy. In fact, we construct functionsg1 andg2 in equation

(b.10 ) by the standard rules, e.g.g1(ft|ft−1, xt;B,C, θ) = l(ft, ft−1|xt;B,C, θ)/
∫
l(ft, ft−1|xt;B,C, θ)dft.
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is the set of admissible arguments in the Laplace transform.2 In this section, we first define the semi-

parametric efficiency bound for estimating parameterβ from the conditional moment restrictions (b.11),

and explain how it can be reached from above by sequences of finite grids on argumentu (Subsection

B.3.1). Then, we illustrate the patterns of the efficiency bounds for the Poisson count panel data model

with stochastic time effect introduced in Example 7 (Subsection B.3.2). The proofs of the results are

provided in Subsection B.3.3.

B.3.1 GMM efficiency bounds for a continuum of conditional moment restrictions

Let us introduce the conditional variance-covariance matrix:

Ωt(u, ũ) = Cov
(
ht(β0, u), ht(β0, ũ)|yt−1, xt

)
, (b.12)

whereβ0 denotes the true parameter value, and define the associated conditional covariance operatorAt

by:

Atϕ(u) =

∫

U

Ωt(u, ũ)ϕ(ũ)dπ(ũ),

for any admissible functionϕ in L2(U, π), whereL2(U, π) is the Hilbert space ofd-variate square inte-

grable functions of argumentu ∈ U equipped with the inner product〈ϕ, ϕ̃〉 =

∫

U

ϕ(u)′ϕ̃(u)dπ(u) for

measureπ onU .

Assumption SM.1. The process(y′t, x
′

t)
′ is strictly stationary and ergodic.

Assumption SM.2. The conditional moment functionht is square integrable w.r.t. the product measure

P ⊗ π for datayt, xt and argumentu, i.e.,
∫

U

E[‖ht(β, u)‖2]dπ(u) <∞, for anyβ.

When the setU is unbounded, the choice of measureπ can accommodate conditional moment func-

tions whose second-order moments are bounded away from zerofor all u. Assumption SM.2 implies in

particular that i) the moment functionht(β, ·) and the conditional expectationE[ht(β, ·)|yt−1, xt] are in

L2(U, π), P -a.s., for anyβ, and ii) the conditional variance-covariance matrixΩt is well-defined,P -a.s.

2The conditional moment restrictions for parametric identification considered in Section 4, or those for semi-parametric

identification in Section 5, do not contain the lagged endogenous variablesyt−1 in the conditioning set. Thus, processht(β0, u),

for given argumentu, is not a martingale difference sequence w.r.t. information yt−1, xt. The GMM efficiency bound could

be derived in such frameworks as well, but at the cost of additional complexity. We do not consider those frameworks in this

section.
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Assumption SM.3. The operatorAt mapsL2(U, π) toL2(U, π), is injective and compact,P -a.s.

The operatorAt is self-adjoint. By the compactness property in Assumption SM.3, there exists an

orthonormal basis ofL2(U, π) consisting of eigenfunctionsϕt,j, j = 1, 2, ... of operatorAt, with associated

eigenvaluesλt,j, j = 1, 2, ... [see e.g. Kress (1999) for the spectral decomposition of compact operators].

The eigenvalues are such that:

λt,j = 〈ϕt,j, Atϕt,j〉 = V

(∫

U

ϕt,j(u)
′ht(β0, u)dπ(u)|yt−1, xt

)
> 0,

where the strict inequality follows from the injectivity ofoperatorAt. Moreover, we can rank the eigen-

values in decreasing orderλt,1 ≥ λt,2 ≥ ..., and we haveλt,j → 0 asj → ∞, P -a.s.

Define the functions:

gt,j(β) =

∫

U

ϕt,j(u)
′ht(β, u)dπ(u) = 〈ϕt,j, ht(β, ·)〉, j = 1, 2, ...,

that are inner products of the moment function with the eigenfunctions of the covariance operator. From

(b.11), we get the countable set of conditional moment restrictions:

E[gt,j(β)|yt−1, xt] = 0, j = 1, 2, ... (b.13)

Given that the functionsϕt,j build a basis ofL2(U, π),P -a.s., under Assumption SM.2 this countable set of

conditional moment restrictions is equivalent to the original continuum of conditional moment restrictions

(b.11).

Let us denote byΣJ , say, the GMM efficiency bound for estimating parameterβ from the condi-

tional moment restrictions in (b.13) forj = 1, ..., J , with given integerJ , andT → ∞ [Hansen (1985),

Chamberlain (1987)]. We have:

ΣJ =

(
E

[
E

[
∂GJ

t (β0)
′

∂β
|yt−1, xt

]
V
[
GJ

t (β0)|yt−1, xt

]−1

E

[
∂GJ

t (β0)

∂β′
|yt−1, xt

]])−1

, (b.14)

whereGJ
t (β) = [gt,1(β), ..., gt,J(β)]

′. The GMM efficiency boundΣJ can be written in terms of the

spectral decomposition of operatorAt. More precisely, let us define:

Dt(u) = E

[
∂ht(β0, u)

∂β′
|yt−1, xt

]
. (b.15)

We have [see Section B.3.3 i)]:

ΣJ =

(
E

[
J∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉

])−1

, (b.16)
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where 〈ϕt,j, Dt〉 is the row vector with components〈ϕt,j, Dt,k〉, for k = 1, ..., p, with Dt,k(u) =

E

[
∂ht(β0, u)

∂βk
|yt−1, xt

]
, and〈Dt, ϕt,j〉 = 〈ϕt,j, Dt〉′.

Definition 5. The GMM efficiency bound for estimating parameterβ from the continuum of conditional

moment restrictions (b.11) is the limit:

Σ = lim
J→∞

ΣJ ,

when this limit exists and is a positive definite matrix.

The existence and the positive-definiteness of the limit is guaranteed by the next assumption.

Assumption SM.4. i) If Dtξ = 0 in L2(U, π), P -a.s., forξ ∈ R
p, thenξ = 0.

ii) We have:

E

[
∞∑

j=1

1

λt,j
‖〈Dt, ϕt,j〉‖2

]
<∞.

Assumption SM.4 i) is the counterpart of the usual full-rankcondition for local identification.

Proposition 9. Under Assumptions SM.1-SM.4, the GMM efficiency boundΣ exists and is equal to:

Σ =

(
E

[
∞∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉

])−1

=
(
E
[
〈Dt, A

−1
t Dt〉

])−1
.

Proof: See Sections B.3.3 ii) and iii).

Even if the inverse of operatorAt is not defined on the whole vector spaceL2(U, π), under Assumptions

SM.1-SM.4 the function

zt = A−1
t Dt (b.17)

exists inL2(U, π) [see Section B.3.3 iii)]. Proposition 9 extends the formula for the asymptotic variance of

efficient GMM estimators with a continuum of moment restrictions in Carrasco, Florens (2000, 2014) to a

setting with conditional information. Carrasco et al. (2007) consider a dynamic setting with unobservable

components. They show the asymptotic efficiency of a GMM estimator based on a continuum of moment

restrictions induced by the joint characteristic functionof the observable component, under a Markov

assumption for the latter. We do not assume Markovianity of the observable component.

The GMM efficiency bound in Proposition 9 can also be derived by an optimal choice ofp instruments

corresponding to functionzt defined in equation (b.17). Indeed, let us consider the function:

gt(β) =

∫

U

zt(u)
′ht(β, u)dπ(u) = 〈zt, ht(β, ·)〉. (b.18)
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From (b.11) and the Law of Iterated Expectation, functiongt(β) defines an exactly identified unconditional

moment restrictionE[gt(β0)] = 0. We show in Subsection B.3.3 iv) that the asymptotic varianceof the

GMM estimator based on the unconditional moment restrictionE[gt(β0)] = 0 is:

E

[
∂gt(β0)

∂β′

]−1

E[gt(β0)gt(β0)
′]E

[
∂gt(β0)

′

∂β

]−1

= Σ, (b.19)

i.e. the GMM efficiency bound. Thus,zt is the optimal instrument.

Finally, we show that the GMM efficiency boundΣ can be approximated from above by the GMM

efficiency bound from the conditional moment restrictions based on a fine grid of values for the argument

of the Laplace transform [see e.g. Singleton (2001) for GMM estimation with the conditional characteristic

function evaluated on a grid]. For expository purpose, let us assume that setU is a hyperrectangular

domain inRN , i.e.U = [a1, b1)× ...× [aN , bN). We consider multi-dimensional grids that are obtained by

partitioning each interval[al, bl) in subintervals, and building the Cartesian products of these subintervals.

We get in this way a partition of setU in non-overlapping subrectanglesUm, form = 1, ...,M , say, whose

union isU . Moreover, letum ∈ Um for anym = 1, ...,M . We refer to the set of subrectanglesUm and

pointsum as a “multi-dimensional grid”. The diameter∆M of such a grid is defined as the largest of

the diameters of the subrectangles, where the diameter of a subrectangleUm is the largest length of the

intervals whose Cartesian product generatesUm.

Assumption SM.5.For any multi-dimensional grid corresponding to a partition ofU inM non-overlapping

subrectangles, i) the(dM, dM) variance-covariance matrixΩM
t with blocksΩt(um, um′) is positive defi-

nite,P -a.s., and ii) the(dM, p) matrixDM
t = (Dt(u1)

′, ..., Dt(uM)′)′ is such thatDM
t ξ = 0, P -a.s., for

ξ ∈ R
p, impliesξ = 0.

Assumption SM.6. Functionsht(β0, u), ∂ht(β0, u)/∂β′ andzt(u) are continuous w.r.t. argumentu, P -

a.s.

For any multi-dimensional grid, letΣgr
M denote the GMM efficiency bound from the conditional mo-

ment restrictions (b.11) corresponding to argumentsum, withm = 1, ...,M , that is:

Σgr
M =

(
E
[
DM ′

t (ΩM
t )−1DM

t

])−1

. (b.20)

We haveΣ ≤ Σgr
M in the ordering of positive-definite matrices, since the efficiency boundΣgr

M is based on

a subset of the information. We have the following Proposition:
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Proposition 10. Under Assumption SM.1-SM.6, if the number of subrectanglesM tends to infinity and

the diameter of the grid∆M tends to zero, thenΣgr
M tends to the GMM efficiency bound:

Σgr
M → Σ, asM → ∞ and∆M → 0.

Proof: See Section B.3.3 v).

B.3.2 An illustration

In this subsection we present an illustration with the Poisson count panel data model with stochastic time

effects introduced in Example 7. This is a semi-parametric model. We compare the GMM efficiency

bounds obtained from two sets of conditional moment restrictions: the continuum set of nonlinear cross-

differencing restrictions (6.5) and the linear cross-differencing restrictions (6.6). We also investigate the

informational content of the nonlinear cross-differencing restrictions for different values of the argument

in the Laplace transform.

i) The Data Generating Process (DGP)

The individual count histories are independent conditionally on the common latent factor(ft), with

conditional Poisson distributionyi,t ∼ P(ft + xi,tα + yi,t−1c). The regressorxi,t is scalar. The Markov

processes(xi,t), i = 1, ..., n, and(ft) are exogenous and mutually independent. The former follow iden-

tical ARG processes with scale parameterδx > 0, degree of freedom parameterνx > 0 and first-order

autocorrelationρx < 1 [see equation (4.10)]. The latter process follows an ARG process with parameters

δf > 0, νf > 0 andρf < 1. We set the number of individuals asn = 25, that is a realistic choice for

instance in view of applications to corporate default countdata aggregated per industrial sectors.

Throughout the numerical experiments of this section, we set the ARG parameters of the exogenous

covariate processes asρx = 0.5, νx = 0.5 andδx = 1, and the parameters of the latent process asρf = 0,

νf = 0.5 andδf = 2. This choice is such that the first two unconditional momentsof the exogenous

covariates and the latent factor areE(xi,t) = E(ft) = 1 andV (xi,t) = V (ft) = 2. 3 Finally, we set

α = 0.5 and consider several values for the autoregressive coefficientc.

ii) GMM efficiency bounds based on first-order nonlinear cross-differencing

3The links of model parameters with unconditional moments areE[xi,t] =
νxδx
1−ρx

, V [xi,t] = νx

(
δx

1−ρx

)2
, and similarly for

process(ft).
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a) The nonlinear restrictions with cross-differencing (6.5) yield a continuum of conditional moment

restrictions as in (b.11), where the vector conditional moment function is:

ht(β, u) = [Hi,t(β, u)−H1,t(β, u)]i=2,3,...,n, (b.21)

with dimensiond = n − 1 and functionHi,t(β, u) = exp{uyi,t + (1 − exp u)(xi,tα + yi,t−1c)}, and the

parameter isβ = (α, c)′. For any admissible value of the scalar argumentu, we considern−1 conditional

moment restrictions only, since the remaining restrictions can be written as linear combinations of them.4

We compute the GMM efficiency boundΣ for parameterβ whenT → ∞ andn is fixed using the

results in Section B.3.1.5 We use the explicit expressions for functionDt and conditional variance matrix

Ωt [see Section B.3.3 vi)]:

Dt(u) = −(eu − 1)Ψf
t (e

u − 1)∆zt, (b.22)

and:

Ωt(u, ũ) = ω1,t(u, ũ)ιn−1ι
′

n−1 + diag{ωi,t(u, ũ), i = 2, 3, ..., n}, (b.23)

whereιn−1 is the(n− 1, 1) vector of ones,

ωi,t(u, ũ) = Ψf
t (e

u+ũ − 1)e(e
u−1)(eũ−1)z′i,tβ0 −Ψf

t (e
u + eũ − 2),

the rows of(n − 1, 2) matrix ∆zt are (zi,t − z1,t)
′ for i = 2, 3, ..., n, with zi,t = (xi,t, yi,t−1)

′, and

Ψf
t (u) = E

[
exp(uft)|yt−1, xt

]
is the conditional Laplace transform of the stationary distribution of the

ARG process(ft) givenyt−1, xt. Since the latent factor process is i.i.d. under the parameter choiceρf = 0

for the DGP, and is independent of the covariate processes, the conditional Laplace transform boils down

to the stationary Laplace transform:

Ψf
t (u) = Ψf (u) =

1

(1− δfu)
νf .

Computing functionΨf
t for non-zero autocorrelation of the latent process would require a nonlinear fil-

tering approach. Since the study of the impact of parameterρf on the efficiency bound is not the main

focus of our illustration, we limit ourselves to the choiceρf = 0. From equation (b.23), the condi-

tional second moment of the moment functionht(β0, u) exists if, and only if,Ψf (e2u − 1) < ∞, i.e.

u < umax = 1
2
log(

1−ρf
δf

+ 1). For our DGP we getumax = 0.2027.

4The efficiency bound is independent from the selected set of linearly independent conditional moment restrictions.
5The semiparametric efficiency bound when bothn andT tend to infinity can be derived from the results in Gagliardini and

Gourieroux (2014).
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For any finite grid, we compute the asymptotic varianceΣgr
M in (b.20) by using equations (b.22)-(b.23)

and approximating the expectation by a sample average over along simulated path of the process under

the DGP. We compute the GMM efficiency boundΣ via the approximation for a fine grid as in Proposition

10.

b) For comparison purposes we also consider the GMM efficiency bound for the linear cross-differencing

restrictions (6.6). They yield then− 1 conditional moment restrictions:

E[ht(β)|yt−1, xt] = 0, (b.24)

whereht(β) = [Hi,t(β)−H1,t(β)]i=2,...,n andHi,t(β) = (yi,t − xi,tα− yi,t−1c)− (y1,t − x1,tα− y1,t−1c).

The asymptotic GMM efficiency bound from linear cross-differencing is:

Σ∗ = (E[∆z′tΩ
−1
t ∆zt])

−1,

whereΩt = ω1,tιn−1ι
′

n−1 + diag(ωi,t, i = 2, 3, ..., n) andωi,t = 1 + z′i,tβ0.

c) Let us now discuss the values and patterns of the GMM efficiency bounds for the DGP of paragraph

i). For the sake of conciseness, we focus our analysis on the autoregressive parameterc. We start by setting

the value of this parameter in the DGP asc = 0.5. For the purpose of interpreting the results, we report

the asymptotic efficiency bounds in terms of standard deviations which are scaled in order to correspond

to a sample of sizeT = 100. Such a sample size is realistic e.g. for an application withmonthly data on

corporate default counts. We find that the efficiency bound for estimating parameterc from the nonlinear

cross-differencing restrictions is such that
√

Σcc/T = 0.0165, whereΣcc denotes the lower-right element

of the(2, 2) matrixΣ, and the efficiency bound from the linear cross-differencing restrictions is such that
√
Σ∗

cc/T = 0.0175. The informational content of nonlinear restrictions reduces the standard deviation for

estimating parameterc of more than6 percent in the considered DGP.

In Figure 1 we investigate the efficiency loss incurred when asingle argument is used in the cross-

differencing nonlinear restrictions instead of the continuum set. We display the scaled standard deviation√
Σgr

1,cc(u)/T as a function of the argumentu in the admissible set, whereΣgr
1 (u) is the GMM asymptotic

variance for the nonlinear cross-differencing restrictions with a single argumentu. The corresponding

curve is U-shaped, lies above the horizontal line for value
√

Σcc/T corresponding to the GMM efficiency

bound, and has a minimum nearu = −0.1. The loss of information when the optimal argumentu is

adopted is small. However, this optimal argument depends onthe DGP and is unknown to the econo-

metrician. In contrast, the loss of information can be largefor other argument values, especially at the
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boundaries of the admissible set. The curve
√

Σgr
1,cc(u)/T intersects the horizontal line defined by the effi-

ciency bound
√

Σ∗
cc/T from linear cross-differencing in argumentu = 0. In fact, the asymptotic variance

Σgr
1 (u) is not defined for argumentu = 0 because the moment condition for that argument is degenerate

equal to zero. However,Σgr
1 (u) tends toΣ∗ asu → 0 because the first-order expansion of the nonlin-

ear cross-differencing restrictions for smallu yields the linear cross-differencing restrictions as seenin

Section 6.2.

In Figure 2 we display the scaled asymptotic standard deviation
√
Σgr

2,cc(0, u)/T , which corresponds

to the joint use of the linear cross-differencing restrictions (i.e., argument0 in the limit sense) and the

nonlinear cross-differencing restrictions for argumentu, as a function ofu. This analysis is useful to

understand which argument values in the nonlinear cross-differencing restrictions are most informative

when usedadditionally to the linear cross-differencing restrictions. We find thatvalues close tou =

−0.20 are the most informative in this incremental measure, and the corresponding GMM asymptotic

variance is very close to the efficiency boundΣcc. Moreover, this finding shows that a small number of

arguments for the cross-differencing restrictions - if well chosen - convey most part of the information in

the continuum of conditional moment restrictions, at leastfor the considered GDP. The curve in Figure 2

reaches the horizontal line corresponding to the efficiencybound from linear cross-differencing restrictions

for argumentu tending to0, oru tending to the boundaries of the admissible setumax and−∞ (not shown),

because in those cases the additional information providedby argumentu is small.

In Figure 3 we study the patterns of the GMM efficiency bounds for estimating the autoregressive

coefficientc, as functions of the value of parameterc in the DGP. Specifically, we display the values of

the scaled efficiency bounds
√
Σcc/T and

√
Σ∗

cc/T from nonlinear and linear cross-differencing restric-

tions, respectively, as functions of parameter valuec in the DGP. Both curves feature an inverted U-shape,

which means that the GMM asymptotic variance for estimatingparameterc gets smaller either for values

of c close to0, or for values close to1. A naive analogy with the linear autoregressive process without

unobservable effects offers an interpretation for the factthat the accuracy for estimating the autoregres-

sive coefficientc increases when the process is more persistent. The difference between the two curves

in Figure 3 is bigger for small values ofc. For those DGPs, the contribution of the nonlinear cross-

differencing restrictions is more important. For instance, for values ofc below 0.20, say, the nonlinear

cross-differencing restrictions reduce the asymptotic standard deviation of about15%, or more, compared

to the linear restrictions.
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To summarize, the main findings of our numerical illustrations are: (i) the continuum of nonlinear

cross-differencing restrictions has a significant contribution for asymptotic efficiency compared to the

finite set of linear cross-differencing restrictions, (ii)the incremental informational content of nonlinear

restrictions is bigger for argument values close to - but different from -0, and (iii) the GMM efficiency

bound is well approximated even with a small number of well-chosen argument values, such as two or

three.

B.3.3 Proofs

i) Proof of equation (b.16)

By the orthonormality of the eigenfunction basis, we have:

Cov
(
gt,j(β0), gt,k(β0)|yt−1, xt

)
=

∫

U

∫

U

ϕt,j(u)
′Ωt(u, ũ)ϕt,k(ũ)dπ(u)dπ(ũ) = 〈ϕt,j, Atϕt,k〉 = λt,jδj,k,

whereδj,k = 1 if j = k, and= 0, otherwise, and:

E

[
∂gt,j(β0)

∂β′
|yt−1, xt

]
=

∫

U

ϕt,j(u)
′E

[
∂ht(β0, u)

∂β′
|yt−1, xt

]
dπ(u) = 〈ϕt,j, Dt〉.

Then, equation (b.16) follows from equation (b.14).

ii) Proof of Proposition 9, first equality

The first equality in Proposition 9 follows from the definition of Σ (Definition 5), the expression ofΣJ

in equation (b.16), and the fact that we can apply the Lebesgue’s dominated convergence Theorem for

J → ∞ in equation (b.16) under Assumption SM.4. MatrixE

[
J∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉

]
is positive

definite. Indeed, ifξ′E

[
J∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉

]
ξ = 0 for a vectorξ ∈ R

p, then we get〈ϕt,j, Dtξ〉 =

0 for j, P -a.s. This impliesDtξ = 0 in L2(U, π), P -a.s, and henceξ = 0 by Assumption SM.4 i). Thus,

the inverse ofE

[
J∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉

]
exists and is positive definite.

iii) Proof of Proposition 9, second equality

Assumption SM.4 ii) implies that:
∞∑

j=1

1

λt,j
〈ϕt,j, Dt,k〉2 <∞, P − a.s, (b.25)
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for any k = 1, ..., p. SinceN (A∗

t )
⊥ = N (At)

⊥ = L2(U, π) by the self-adjoint property of opera-

tor At and Assumption SM.3, whereN (·) denotes the null space of a matrix, the summability condi-

tion in (b.25) implies thatDt,k is in the range of operatorAt, P -a.s., for anyk, by the Picard theorem

[see e.g. Kress (1999)]. The range of operatorAt is a subspace of vector spaceL2(U, π) known as

the Reproducing Kernel Hilbert Space (RKHS). Under Assumption SM.4,A−1
t Dt exists and is equal to

A−1
t Dt =

∞∑

j=1

1

λt,j
〈ϕt,j, Dt〉ϕt,j. Thus, we have:

〈Dt, A
−1
t Dt〉 =

∞∑

j=1

1

λt,j
〈Dt, ϕt,j〉〈ϕt,j, Dt〉,

which yields the second equality in Proposition 9.

iv) Proof of Equation (b.19)

From (b.18) we have

E

[
∂gt(β0)

∂β′

]
= E

[∫

U

zt(u)
′E

[
∂ht(β0, u)

∂β′
|yt−1, xt

]
dπ(u)

]

= E[〈A−1
t Dt, Dt〉] = E[〈Dt, A

−1
t Dt〉], (b.26)

sinceA−1
t is self-adjoint on the RKHS, and:

E[gt(β0)gt(β0)
′] = E

[∫

U

∫

U

zt(u)
′E[ht(β0, u)ht(β0, ũ)

′|yt−1, xt]zt(ũ)dπ(u)dπ(ũ)

]
(b.27)

= E

[∫

U

∫

U

zt(u)
′Ωt(u, ũ)zt(ũ)dπ(u)dπ(ũ)

]
= E[〈zt, Atzt〉] = E[〈Dt, A

−1
t Dt〉].

Thus, from equations (b.26) and (b.27) and Proposition 9, the asymptotic variance of the GMM estimator

based on the unconditional moment restrictionE[gt(β0)] = 0 is:

E

[
∂gt(β0)

∂β′

]−1

E[gt(β0)gt(β0)
′]E

[
∂gt(β0)

′

∂β

]−1

= (E[〈Dt, A
−1
t Dt〉])−1 = Σ,

which proves equation (b.19).

v) Proof of Proposition 10

We use an argument similar to Singleton (2001), Section 5. Let us use gridum,m = 1, ...,M , to approxi-

mate the integral in (b.18) and define the function:

gMt (β) =
1

M

M∑

m=1

zt(um)
′ht(β, um)vm,
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wherevm is the multi-dimensional volum of subrectangleUm, i.e., the product of the corresponding subin-

tervals lengths. LetVM denote the asymptotic variance of the GMM estimator that uses the exactly iden-

tified unconditional moment functiongMt , that is:

VM = E

[
∂gMt (β0)

∂β′

]−1

E[gMt (β0)g
M
t (β0)

′]E

[
∂gMt (β0)

′

∂β

]−1

. (b.28)

Then, we have:

Σ ≤ Σgr
M ≤ VM , (b.29)

in the order of symmetric matrices, where the second inequality holds because asymptotic varianceVM

corresponds to a GMM estimator that deploys the conditionalmoment restrictions for argument valuesum,

with m = 1, ...,M , using a (in general) non-optimal instrument. Now, when thenumber of grid pointsM

tends to infinity and the grid diameter∆M tends to0, we have:

VM → Σ, (b.30)

because of the convergence of the Riemann sums in (b.28) to thecorresponding integrals in (b.26) and

(b.27) under the continuity condition in Assumption SM.6 and an application of the Lebesgue theorem,

and using equation (b.19). Then, (b.29) and (b.30) implyΣM → Σ, which concludes the proof.

vi) Proof of equations (b.22) and (b.23)

Let us first prove the expression of functionDt given in equation (b.22). We use the definition ofDt in

(b.15) and the(i− 1)-th component of the gradient of the moment function in (b.21):
[
∂ht(β0, u)

∂β′

]

i−1

= exp{uyi,t + (1− eu)z′i,tβ0}(1− eu)z′i,t − exp{uy1,t + (1− eu)z′1,tβ0}(1− eu)z′1,t,

wherei = 2, 3, ..., n. From equation (6.4) evaluated at the true parameter value we have:

E[exp(uyi,t)|ft, yt−1, xt] = exp{(ft + z′i,tβ0)(e
u − 1)}. (b.31)

Then, we get:

E

[(
∂ht(β0, u)

∂β′

)

i−1

|ft, yt−1, xt

]
= − exp{ft(eu − 1)}(eu − 1)(z′i,t − z′1,t),

i.e. in vector notation:

E

[
∂ht(β0, u)

∂β′
|ft, yt−1, xt

]
= − exp{ft(eu − 1)}(eu − 1)∆zt.
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By the Law of Iterated Expectation, we get:

Dt(u) = E

[
E

[
∂ht(β0, u)

∂β′
|ft, yt−1, xt

]
|yt−1, xt

]
= −(eu − 1)E

[
exp{ft(eu − 1)}|yt−1, xt

]
∆zt,

which yields equation (b.22) using the definition of the conditional Laplace transformΨf
t .

Let us now prove the expression for matrixΩt(u, ũ) in equation (b.23). From the definition in (b.12),

the(i− 1, j − 1) element of matrixΩt(u, ũ) is given by:

[Ωt(u, ũ)]i−1,j−1 = E
[
(ht(β0, u))i−1(ht(β0, ũ))j−1|yt−1, xt

]

= E
[
Hi,t(β0, u)Hj,t(β0, ũ)|yt−1, xt

]
− E

[
Hi,t(β0, u)H1,t(β0, ũ)|yt−1, xt

]

−E
[
H1,t(β0, u)Hj,t(β0, ũ)|yt−1, xt

]
+ E

[
H1,t(β0, u)H1,t(β0, ũ)|yt−1, xt

]
,

for i, j = 2, 3, ..., n. To compute these conditional expectations, we use:

E
[
Hi,t(β0, u)Hi,t(β0, ũ)|ft, yt−1, xt

]
= E[exp{(u+ ũ)yi,t}|ft, yt−1, xt] exp{(2− eu − eũ)z′i,tβ0}

= exp{(ft + z′i,tβ0)(e
u+ũ − 1) + (2− eu − eũ)z′i,tβ0}

= exp{(eu − 1)(eũ − 1)z′i,tβ0 + ft(e
u+ũ − 1)},

for all i, where the second equality follows from (b.31), and:

E
[
Hi,t(β0, u)Hj,t(β0, ũ)|ft, yt−1, xt

]
= E

[
Hi,t(β0, u)|ft, yt−1, xt

]
E
[
Hj,t(β0, ũ)|ft, yt−1, xt

]

= exp{ft(eu + eũ − 2)},

for i 6= j. Then, by the Law of Iterated Expectation, we get:

E
[
Hi,t(β0, u)Hi,t(β0, ũ)|yt−1, xt

]
= exp{(eu − 1)(eũ − 1)z′i,tβ0}Ψf

t (e
u+ũ − 1),

for all i, and:

E
[
Hi,t(β0, u)Hj,t(β0, ũ)|yt−1, xt

]
= Ψf

t (e
u + eũ − 2),

for i 6= j. Thus, the diagonal terms of matrixΩt(u, ũ) are:

[Ωt(u, ũ)]i−1,i−1 = Ψf
t (e

u+ũ − 1)
(
exp{(eu − 1)(eũ − 1)z′i,tβ0}+ exp{(eu − 1)(eũ − 1)z′1,tβ0}

)

−2Ψf
t (e

u + eũ − 2)

= ωi,t(u, ũ) + ω1,t(u, ũ),
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and the out-of-diagonal terms are:

[Ωt(u, ũ)]i−1,j−1 = Ψf
t (e

u+ũ − 1) exp{(eu − 1)(eũ − 1)z′1,tβ0} −Ψf
t (e

u + eũ − 2) = ω1,t(u, ũ).

Using the matrix notation, we get equation (b.23).
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Figure 1: Efficiency loss for nonlinear cross-differencingwith a single argument.
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The blue curve displays the scaled asymptotic standard deviation
√
Σgr

1,cc(u)/T for estimating the autoregressive parameterc

in the Poisson count panel data model with stochastic time effect as a function of argumentu, whereΣgr
1,cc(u) is the lower-right

element in the asymptotic variance-covariance matrix of the efficient GMM estimator for parameterβ = (α, c)′ using the

nonlinear cross-differencing conditional moment restrictions (6.5) with a single argumentu, andT = 100. The horizontal red

dashed line at value
√

Σcc/T corresponds to the GMM efficiency bound for estimating parameterc using the nonlinear cross-

differencing restrictions (6.5) for all admissible real argumentsu. The horizontal red dotted line at value
√
Σ∗

cc/T corresponds

to the GMM efficiency bound for the linear cross-differencing conditional moment restrictions (6.6). The DGP is as in Section

B.3.2 i) with c = 0.5 for n = 25.
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Figure 2: Incremental informational content of nonlinear cross-differencing restrictions.
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The blue curve displays the scaled asymptotic standard deviation
√
Σgr

2,cc(0, u)/T for estimating the autoregressive parameter

c in the Poisson count panel data model with stochastic time effect as a function of argumentu, whereΣgr
2,cc(0, u) is the

lower-right element in the asymptotic variance-covariance matrix of the efficient GMM estimator for parameterβ = (α, c)′

using jointly the linear cross-differencing restrictions(6.6) and the nonlinear cross-differencing restrictions (6.5) with a single

argumentu, andT = 100. The horizontal red dashed line at value
√

Σcc/T corresponds to the GMM efficiency bound

for estimating parameterc using the nonlinear cross-differencing conditional moment restrictions (6.5) for all admissible real

argumentsu. The horizontal red dotted line at value
√

Σ∗
cc/T corresponds to the GMM efficiency bound for the linear cross-

differencing conditional moment restrictions (6.6). The DGP is as in Section B.3.2 i) withc = 0.5 for n = 25.
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Figure 3: Patterns of the efficiency bounds as functions of the autoregressive parameterc.
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This Figure displays the patterns of the GMM efficiency bounds for estimating the autoregressive coefficientc in the Poisson

count panel data model with stochastic time effect from linear and nonlinear cross-differencing restrictions, respectively, as a

function of the parameter valuec in the DGP. The solid red line displays
√

Σcc/T as a function of parameter valuec in the

DGP, whereΣcc is the lower-right element of the GMM efficiency bound matrixfor estimating parameterβ = (α, c)′ using

the continuum of nonlinear cross-differencing conditional moment restrictions in (6.5), andT = 100. The dashed blue line

displays
√

Σ∗
cc/T as a function ofc, whereΣ∗

cc is the lower-right element of the GMM efficiency bound matrixusing the linear

cross-differencing conditional moment restrictions in (6.6). The DGP is as in Section B.3.2 i) forn = 25.
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