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Abstract

In Section B.1 we provide additional results on the linear $3&an model with common factor and con-
tagion. In Section B.2 we give additional identification déstéor the semiparametric setting. Finally, in
Section B.3 we derive the GMM semiparametric efficiency bofrath cross-differencing and illustrate
our findings for the Poisson count model with stochastic tiffects. Equation numbe(s) and(a.n) for

n = 1,2, ... refer to the main body and Appendix A of the paper, respegtive



B.1 Additional results for the linear Gaussian model with common

factor and contagion

In this section we provide results for the structural VAR ralid Example 2 concerning the link between
the nonlinear moment restrictions and the Yule-Walker &qna (Subection B.1.1) and model parameters

estimation in the homoskedastic setting (Subsection B.1.2)

B.1.1 Link with Yule-Walker equations

We show that the nonlinear moment restrictions (a.1)-@.8)well-chosen (parameter-dependent) linear
combinations of the Yule-Walker equations for the strusfMAR model (4.1). The Yule-Walker equations
involving the covariance functiohy(h) = Covy(y:, y:—1), for h = 0, 1,2, ... of the observable process are
derived by multiplying the first equation in system (4.1)yy; +, v;_», ..., respectively, and computing

the expectation on both sides. We get:

['o(0) = BA0)+ CTo(1) + 3, (b.1)
[o(1) = BAy(1)+ CTy(0), (b.2)
Lo(h) = BAg(h)+CTo(h—1), h>2, (b.3)

whereA(h) = Couvy(f:, y:—n) i the cross-covariance function of processg$and(y;). These covari-
ances are not directly nonparametrically identifiable ftbendata. However, some linear combinations of
the Yule-Walker equations (b.1)-(b.3) do not involve théentifiable covarianced, (k). To see this, let
us multiply the first equation in system (4.1) By, ,, for h = 0,1,2, ... and compute the expectation, to
get:

Ao(h) = B(®)'+ CA(h+1), h=0,1,2,.. (b.4)
Then, by considering equation (b.1), subtracting equdtia?) post-multiplied byC’, and using equation
(b.4) withh = 0, we get:

F()(O) - Fo(l)c/ = Cro(l)/ - CF(](O)C/ + BB, + E,

i.e., the first-order nonlinear moment restriction (a.inifrly, by considering equation (b.2), subtracting

equation (b.3) foh, = 2 post-multiplied byC’, and using equation (b.4) with= 1, we get:
To(1) — To(2)C" = CTy(0) — CTy(1)C" + BB,
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i.e., the second-order nonlinear moment restriction (ar2ye third-order nonlinear moment restrictions

are obtained in an analogous manner as a linear combindtiba equations in (b.3) fat = 2 andh = 3.

B.1.2 Consistent estimation from first-order nonlinear restrictionsin the homoskedas-

tic case

Let us consider the model with static factor, i.@. = 0, and assum&, = oZId, in (4.1), i.e. the
innovations of the measurement equation are independdiitanoskedastic. In Section 4.1 we show that
the parameters are identifiable from the identifiedSsel he proof of identifiability suggests a consistent
estimation method. Let us denatg-(c2, B, C) a criterion based on moment restrictions (4.3) such that
Gr tends to a nondegenerate liniit,,, say, when the sample siZétends to infinity. Due to the lack of

first-order identifiability (Corollary 1), the moment estitoadefined by:

(62, Br, Cr) = argmin Gy (0?, B, C),
02,B,C

where the minimization is such that matiiX B is diagonal, converges fdF large towards the se&,

but not necessarily to the true value of the parametgr By, Cy). Corollary 2 suggests how to modify
the optimization criterion to recover consistency. Letesatl that two symmetric matrices of the same
dimension4, and A, are ordered}, = A, if, and only if, their ranked eigenvalues(A) > --- > Ag(A)

are such thata;(A4y) > \;(4,), forall j =1, ..., K. Thus, to get the consistency, the estimation criterion

has to be penalized:

(62,Br,Cr) = argmin {Gr(0* B,C) +ar [0+ M(BB') + -+ Axg(BB')] }
02,B,C

= ang;nén {Gr(0* B,C)+ ar [0+ Tr(BB)]},

where the minimization is such that matX B is diagonal and the positive weight- tends to0 at an
appropriate speed whéntends to infinity. The study of the properties of such an estiimis beyond the

scope of this paper.

B.2 Additional results for semi-parametric identification

In this section we first consider the multivariate Poissordetavith stochastic intensity, and provide

a discussion of Assumption 1 (Subsection B.2.1) and show temi-parametric identification can be

3



achieved by cross-differencing (Subsection B.2.2). Thes pwovide identification results from third-

order nonlinear moment restrictions in a general semifatac setting (Subsection B.2.3).

B.2.1 Discussion of Assumption 1 in the multivariate Poisson model witstochastic

intensity

Let us consider Assumption 1 in the multivariate Poisson ehadth stochastic intensity. We show two

properties stated in Section 5.2 of the main body. Recalkthéb, w) := log Ey[exp(w' f; + @' fi_1)].

2
Property B.1: When the factor is one-dimensional, and if funct% is analytic in a neighbourhood
wow

of 0 in the complex domain, then Assumption 1 is equivalent tocésq f;) is not i.i.d.

2 ~
Proof: For K = 1, Condition (5.7) in Assumption 1 is equivalent tgw # 0, for somew, w €
wow
2 ~
W, for any neighbourhoo#tV of 0. The negation of this statement % =0, forallw,w € W,
in a neighbourhoodV of 0. Now, we use that a complex analytic function vanishing omp@n domain
2 ~
vanishes everywhere. Hencae,qgf(a#w) = 0, for all w, w. This is equivalent to the fact that functign
wow

is additive in its two arguments);(w, w) = ¢ (w, 0) +1£(0,@). In turn, this is equivalent tg, and f;_,

being independent, i.e., to Markov procégs being i.i.d.

2
Property B.2: When the factor is multidimensional, and if functigan% is analytic in a neighbourhood
wow

of 0 in the complex domain, then Assumption 1 is implied by theoig condition:
If ' f, and7 f,_, are independent, for a € R¥, thenn = 0. (b.5)

Proof: Assume condition (b.5) holds. We have to prove that Asswnpti is valid. Obviously( f;)
cannot be an i.i.d. process. So, we only have to show cond{Bc7) in Assumption 1. LelV be a

neighbourhood of. To show (5.7), we prove the implication in reversed ordghefnegative statements,

2 ~
i.e., let us suppose thatc R¥ is not the zero vector and show that thégwn # 0 for some
wow
w,w € W. Suppose the latter property is not true, i.e.
0? D
LGS I VA Y] (b.6)
dwow’

Consider the process := 1/ f;. The log joint Laplace transform @fy;, g;—1) is

Vi (u,v) = log Elexp(ug: + vg:—1)] = ¥ ¢ (un, vn). (b.7)
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Thus:
PYP(u,v) 0%y (un,vn)

dudv 1 dwow " (b:8)
. 0%y (u, v) . . .
From (b.6) it follows thata“"T = 0 for u, v in a small neighbourhood of By the arguments in the
uov

proof of Property B.1, it follows thag; = ' f; andg;_; = ' f;_; are independent. However, by condition

(b.5), this is not possible and thus (b.6) is not true.

B.2.2 Identification of the multivariate Poisson model with stochasticntensity via

cross-differencing

The first-order nonlinear cross-differencing approacis@néed in Section 6 for a panel data framework is
applicable to multivariate time series (corresponding $ogle “individual” only), where the heterogene-
ity of the factor sensitivities is not observable and ineslwinknown parameters. To illustrate this fact, let
us consider the multivariate Poisson model with commonhstsiic intensity introduced in Section 5.2,

with a single unobservable factor. Equation (6.2) readkigidase:
E [exp(uyi,mh, ﬁ} —exp{(e" — VBSi} Vi, Yuel.
With a change of variable = (e* — 1)3;, we get:
E [exp{log(l +0/B:)yss Y, é} —exp{uf,} Vi, Yo e V.

Assuming that the factor loading for the first individual istrzero, we seti; = 1 as a normalization
condition. Thus, after applying the cross-differencingraach and integrating out the latent factor from

the conditioning set, we get for any pair 1), withi = 2,3, ..., n, the conditional moment restrictions:
E exp{log(1 +v/Bi)yis} — exp{log(1 + v)y1s}Hlyea|, Vi=2,3,..,n, Vv e V. (b.9)

This continuum of nonlinear moment restrictions can be useédentify the loadings parameters.

B.2.3 Identification from third-order nonlinear restrictions

Let us consider the general semi-parametric framework cuAgptions A.1-A.3. If the regression pa-

rameters and the transition p.d.f. of the latent factor artesecond-order nonlinearly identifiable, the



information in third-order restrictions can be exploited identification. An approach similar to the one
presented in Section 5.1 can be pursued. We present her¢eamatite approach relying on the im-
plication of the Markovianity assumption on the latent ¢actconditional on the covariates). For any
given valug( B, C, 0) of the regression parameters, the system of first-ordefrmear moment restrictions
(3.3) allows to compute by Fourier inversion the conditiagiiatribution* of f; givenz;. Similarly, for
any given(B, C, 6), the second- and third-order moment restrictions (3.6)(8t&) allow to compute by
Fourier inversion the conditional distributions(gf, f;—1) givenx,, and of( f;, fi—1, f;—2) givenz,, respec-
tively. In particular, we can compute the conditional tiioa of the unobserved component at horizon 1:
G1(fe| fi—1,24; B, C,0), and the conditional transition at horizon &:( f;| fi—2, z; B, C, 6), say, for given
B, C, 0. When evaluated for the true value of the parametBgsCy, ), these functions are equal to the
true conditional transition functions of the latent fagiwocess at horizons and2, respectively. By the

Markov Assumption A.3, we get the Kolmogorov relationship:

92(,][.’];7&7B,C, 6) = /gl<f‘ft17ﬂ7 8707 e)gl(ft71|f~7ﬂ;Bac7 e)dftflv va .fu vﬂ? (blO)

for the true value of the regression parametBtg’, . This relatioship yields an infinite number of
nonlinear restrictions indexed by the admissible valueg,of, z;. Under the assumption that (b.10)
holds for the true value of the regression paramelgrs’, ¢, only, this condition can be used to identify

BO? 007 90-

B.3 GMM efficiency bounds and cross-differencing
In semi-parametric panel data models with cross-diffar@n¢Section 6), the parameters of interest are
identified by a continuum of conditional moment restricdon

Elh(B,u)|yi—1, 7] = 0, Vu € U, say, (b.11)

where functiori;, with dimensiondim(4;) = d, depends on the observable variabjgs:;, vectors with

dimensiondim () = p includes the parameters of the affine nonlinear regressmaeh®, C, 6, andU

when (B, C, 0) is the true parameter valid,, Cy, 6p), the resulting function is the true conditional densityfpfyiven
z¢. When(B,C,0) is not the true parameter value, the resulting functiofa|z,; B, C, #), say, may not be a density. The
same remark applies for functionsf;, fi—1|xs; B, C,0) andi(f;, fi—1, fi—2|z¢; B, C, 6) obtained using second- and third-
order restrictions. This fact is not a problem for our idkcdition strategy. In fact, we construct functionsandg: in equation
(b.10) by the standard rules, e@(f:|fi—1,xs; B, C,0) = l(ft, fi—1|ze; B, C,0)/ [1(ft, fe—1]ze; B, C, 0)df:.
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is the set of admissible arguments in the Laplace transfdrim this section, we first define the semi-
parametric efficiency bound for estimating parametérom the conditional moment restrictions (b.11),
and explain how it can be reached from above by sequencesitef ginds on argument (Subsection
B.3.1). Then, we illustrate the patterns of the efficiencyrutsufor the Poisson count panel data model
with stochastic time effect introduced in Example 7 (SubeacB.3.2). The proofs of the results are

provided in Subsection B.3.3.

B.3.1 GMM efficiency bounds for a continuum of conditional moment restictions

Let us introduce the conditional variance-covariance ixiatr

O, @) = Cov (ht(ﬁo,u), he(Bo, ) |yi1, ﬂ) , (b.12)

where 5, denotes the true parameter value, and define the assocatdiianal covariance operatat;
by:

Ap() = [ Dyla i) (@in(),
for any admissible functiorp in L?(U, w), where L*(U, r) is the Hilbert space of-variate square inte-
grable functions of argument € U equipped with the inner produgp, ¢) = / o(u)'¢(u)dm(u) for

U
measurer onU.

Assumption SM.1. The processy;, =)’ is strictly stationary and ergodic.

Assumption SM.2. The conditional moment functidn is square integrable w.r.t. the product measure

P ® 7 for datay,, z, and argument, i.e.,/ E[||h:(B,u)||!]dr(u) < oo, for any 3.
U

When the selU is unbounded, the choice of measurean accommodate conditional moment func-
tions whose second-order moments are bounded away fronfareatl ©. Assumption SM.2 implies in
particular that i) the moment functiain (3, -) and the conditional expectatidi[h; (53, -)|y:—1, ¥;| are in

L*(U, ), P-a.s., for any3, and ii) the conditional variance-covariance mafejxis well-defined,P-a.s.

2The conditional moment restrictions for parametric idécation considered in Section 4, or those for semi-parametr

identification in Section 5, do not contain the lagged endogs variableg;_; in the conditioning set. Thus, procéss Sy, u),

for given argument,, is not a martingale difference sequence w.r.t. infornmagio ,, z;. The GMM efficiency bound could
be derived in such frameworks as well, but at the cost of amfdit complexity. We do not consider those frameworks is thi

section.



Assumption SM.3. The operatord; mapsL?(U, w) to L?(U, ), is injective and compacf?-a.s.

The operator4; is self-adjoint. By the compactness property in Assumptidh3S there exists an
orthonormal basis at?(U, 7) consisting of eigenfunctions, ;, j = 1,2, ... of operatorA;, with associated
eigenvalues\; ;, j = 1,2, ... [see e.g. Kress (1999) for the spectral decomposition ofpemtoperators].

The eigenvalues are such that:

Ay = o1y Arprs) = V ( [ st s, _) -0,
U

where the strict inequality follows from the injectivity operatorA4;. Moreover, we can rank the eigen-
values in decreasing ordgy; > ;> > ..., and we have\, ; — 0 asj — oo, P-a.s.

Define the functions:

60s(B) = / o0y () (B, w)dr(w) = {9y (B )y §= 1,2, .

that are inner products of the moment function with the digections of the covariance operator. From

(b.11), we get the countable set of conditional momenticsmns:
E[Qt,](ﬂ)lhaﬂ] :07 j: 1a27 (b13)

Given that the functiong, ; build a basis of.*(U, ), P-a.s., under Assumption SM.2 this countable set of
conditional moment restrictions is equivalent to the avajicontinuum of conditional moment restrictions
(b.12).

Let us denote by ;, say, the GMM efficiency bound for estimating parameteirom the condi-
tional moment restrictions in (b.13) fgr= 1, ..., J, with given integer/, andT — oo [Hansen (1985),
Chamberlain (1987)]. We have:

, -1
Y, = (E {E {wé#yb,ﬂ} 1% [Gg(go)\u,ﬂ]_l E {%\M@H) . (b.14)
where G/ (53) = [g:1(B), .-, 9:.7(8)]'. The GMM efficiency bound:; can be written in terms of the

spectral decomposition of operatdy. More precisely, let us define:

Di(u) = E {Mw_ _] | (b.15)

95

We have [see Section B.3.31)]:

J -1
1
Z )\— (Drs p1,5) (P55 Dt)] ) ) (b.16)
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where (p, ;, D;) is the row vector with componentSp, ;, D, ), for k = 1,....p, with D, ;(u) =
E aht(ﬁmu)
OBk

Definition 5. The GMM efficiency bound for estimating parametdrom the continuum of conditional

[ye—1, 2|, and(Dy, 1 ;) = (@rj, D).

moment restrictions (b.11) is the limit:
¥ = lim Xy,

J—o00

when this limit exists and is a positive definite matrix.
The existence and the positive-definiteness of the limitergnteed by the next assumption.

Assumption SM.4.i) If D¢ = 0in L?(U,r), P-a.s., for¢ € R?, thené = 0.
i) We have:

o0

1
Zr||<Dt,sot,j>||2] < oo.
t,j

Jj=1

E

Assumption SM.4 i) is the counterpart of the usual full-raokdition for local identification.

Proposition 9. Under Assumptions SM.1-SM.4, the GMM efficiency bauegists and is equal to:

o0

z:<EZI

r(Du PN (P> Di)
j=1 "
Proof: See Sections B.3.3 ii) and iii).

>_ = (B (D A7'D]) ™

Even if the inverse of operatet; is not defined on the whole vector spdcgU, 7), under Assumptions
SM.1-SM.4 the function
2 = A;' Dy (b.17)

exists inL?(U, 7) [see Section B.3.3iii)]. Proposition 9 extends the formolathie asymptotic variance of
efficient GMM estimators with a continuum of moment restons in Carrasco, Florens (2000, 2014) to a
setting with conditional information. Carrasco et al. (2P6@nsider a dynamic setting with unobservable
components. They show the asymptotic efficiency of a GMMVhestior based on a continuum of moment
restrictions induced by the joint characteristic functminthe observable component, under a Markov
assumption for the latter. We do not assume Markovianithefdbservable component.

The GMM efficiency bound in Proposition 9 can also be derivgdmoptimal choice of instruments

corresponding to functior, defined in equation (b.17). Indeed, let us consider the foinct
() = / o) (B ) () = (22, he(B,)- (b.18)
U
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From (b.11) and the Law of Iterated Expectation, funcijg) defines an exactly identified unconditional
moment restriction®[g.(5,)] = 0. We show in Subsection B.3.3 iv) that the asymptotic variasfae

GMM estimator based on the unconditional moment restricki¢y; (5,)] = 0 is:

B[ 28] g sataoie [28] s, (5.19)

i.e. the GMM efficiency bound. Thus; is the optimal instrument.

Finally, we show that the GMM efficiency bourid can be approximated from above by the GMM
efficiency bound from the conditional moment restrictioasdd on a fine grid of values for the argument
of the Laplace transform [see e.g. Singleton (2001) for GMliheation with the conditional characteristic
function evaluated on a grid]. For expository purpose, ktasume that séf is a hyperrectangular
domain inRY,i.e. U = [ay,b;) X ... X [an, by). We consider multi-dimensional grids that are obtained by
partitioning each intervdly, b;) in subintervals, and building the Cartesian products ofdlseintervals.
We get in this way a partition of sét in non-overlapping subrectangl&s,, form = 1, ..., M, say, whose
union isU. Moreover, letu,, € U, foranym = 1, ..., M. We refer to the set of subrectanglés and
pointsu,,, as a “multi-dimensional grid”. The diametéx,, of such a grid is defined as the largest of
the diameters of the subrectangles, where the diameter afractangld’,, is the largest length of the

intervals whose Cartesian product generatgs

Assumption SM.5. For any multi-dimensional grid corresponding to a partitiof U in M non-overlapping
subrectangles, i) thé&d M, dM) variance-covariance matrie} with blocks(; (u,,, u,) is positive defi-
nite, P-a.s., and ii) the(dM, p) matrix DM = (Dy(uy)’, ..., Di(ups)') is such thatDM¢ = 0, P-a.s., for
¢ € RP, impliesé = 0.

Assumption SM.6. Functionsh, (5o, u), Oh:(By, w)/0p" and z;(u) are continuous w.r.t. argument, P-

a.s.

For any multi-dimensional grid, |ef, denote the GMM efficiency bound from the conditional mo-

ment restrictions (b.11) corresponding to argumentswith m = 1, ..., M, that is:
T M raMy—1 M)
N — (E [Dt QM) D! ]) . (b.20)

We haveX < X9; in the ordering of positive-definite matrices, since thecédficy bound:{; is based on

a subset of the information. We have the following Propositi
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Proposition 10. Under Assumption SM.1-SM.6, if the number of subrectangléends to infinity and

the diameter of the grid\ , tends to zero, theR¢, tends to the GMM efficiency bound:
¥ — %, asM — ocoandAy — 0.

Proof: See Section B.3.3 v).

B.3.2 An illustration

In this subsection we present an illustration with the Roissount panel data model with stochastic time
effects introduced in Example 7. This is a semi-parametiocieh We compare the GMM efficiency

bounds obtained from two sets of conditional moment rdgirs: the continuum set of nonlinear cross-
differencing restrictions (6.5) and the linear crossetiincing restrictions (6.6). We also investigate the
informational content of the nonlinear cross-differemgcrastrictions for different values of the argument

in the Laplace transform.
i) The Data Generating Process (DGP)

The individual count histories are independent conditignan the common latent factaif;), with
conditional Poisson distributiog ; ~ P(f; + z;:« + y;.—1¢). The regressat;, is scalar. The Markov
processes$r; ), i = 1,...,n, and(f;) are exogenous and mutually independent. The former folttam-i
tical ARG processes with scale paramefgr> 0, degree of freedom parameter > 0 and first-order
autocorrelatiorp, < 1 [see equation (4.10)]. The latter process follows an ARG gssavith parameters
oy > 0, vy > 0andp; < 1. We set the number of individuals as= 25, that is a realistic choice for
instance in view of applications to corporate default calate aggregated per industrial sectors.

Throughout the numerical experiments of this section, wehee ARG parameters of the exogenous
covariate processes as = 0.5, v, = 0.5 andd,, = 1, and the parameters of the latent processas 0,
vy = 0.5 anddé; = 2. This choice is such that the first two unconditional momerftthe exogenous
covariates and the latent factor agz; ;) = E(f;) = 1 andV(z;;) = V(f;) = 2. 3 Finally, we set

a = 0.5 and consider several values for the autoregressive ceeffici

i) GMM efficiency bounds based on first-order nonlinear crossdifferencing

O
1_pz

2
3The links of model parameters with unconditional momentsrr, ;] = 2% | V{z; ] = v, ( ) , and similarly for

1-ps
procesy f).
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a) The nonlinear restrictions with cross-differencingbj6yield a continuum of conditional moment

restrictions as in (b.11), where the vector conditional rantifunction is:

ht(ﬁ,u) = [Hi,t(ﬁau) - Hl,t(ﬂa U)]i=2,3,...,m (b.21)

with dimensiond = n — 1 and functionH, (8, u) = exp{uy;+ + (1 — expu)(z;a + y;,—1¢)}, and the
parameter i$ = («, ¢)’. For any admissible value of the scalar argumgnte consider. — 1 conditional
moment restrictions only, since the remaining restrictioan be written as linear combinations of thém.
We compute the GMM efficiency bourid for parameters whenT — oo andn is fixed using the
results in Section B.3.P. We use the explicit expressions for functiti and conditional variance matrix
; [see Section B.3.3 vi)]:
Dy(u) = —(e* — D)W (e* — 1)Az, (b.22)

and:
Qu(u, @) = wy(u, @) tn_1t1,_; + diag{wi¢(u,@),i = 2,3, ...,n}, (b.23)

wheret,,_; is the(n — 1,1) vector of ones,
wit(u, ) = \I/{(G“M - 1)6(6“71)(61]71)4’#0 — \If{(eu + e —2),

the rows of(n — 1,2) matrix Az, are (z;; — z14) for ¢ = 2,3,...,n, with z;; = (2;4,v:+-1)", and
Ul (u) = E exp(ufi)|y:—1,2:| is the conditional Laplace transform of the stationaryrdistion of the
ARG process f;) giveny; 1, x;. Since the latent factor process is i.i.d. under the pam@necébicep; = 0
for the DGP, and is independent of the covariate procedsesanditional Laplace transform boils down
to the stationary Laplace transform:

Ul (u) = O/ (u) = ﬁ
Computing function¥/ for non-zero autocorrelation of the latent process woutpiire a nonlinear fil-
tering approach. Since the study of the impact of paramegt@n the efficiency bound is not the main
focus of our illustration, we limit ourselves to the choieg = 0. From equation (b.23), the condi-
tional second moment of the moment functibri 3y, ) exists if, and only if, U/ (e?* — 1) < oo, i.e.

U < Uy = %log(% +1). For our DGP we getiy,, = 0.2027.

4The efficiency bound is independent from the selected sé@ditly independent conditional moment restrictions.
5The semiparametric efficiency bound when betandT tend to infinity can be derived from the results in Gagliardimd

Gourieroux (2014).
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For any finite grid, we compute the asymptotic variaie in (b.20) by using equations (b.22)-(b.23)
and approximating the expectation by a sample average desigasimulated path of the process under
the DGP. We compute the GMM efficiency bouridvia the approximation for a fine grid as in Proposition
10.

b) For comparison purposes we also consider the GMM effigibnand for the linear cross-differencing

restrictions (6.6). They yield the — 1 conditional moment restrictions:
Elh(B)ye-1, 2] = 0, (b.24)

whereh;(8) = [Hm(ﬁ) - H1,t(ﬁ)]i=2 ..... n ande‘,t(ﬁ) = (yi,t — Tt — yz’,tflc> — (yl,t — T — yl,tflc)-
The asymptotic GMM efficiency bound from linear cross-diecing is:

¥ = (B[AZ)Q ' Az)) 7

where; = wy in_1t;, | + diag(wiys, i = 2,3,...,n) andw;; = 1+ 2 ,fo.

c) Let us now discuss the values and patterns of the GMM dftgibounds for the DGP of paragraph
i). For the sake of conciseness, we focus our analysis orutbbesgressive parameter\We start by setting
the value of this parameter in the DGPas- 0.5. For the purpose of interpreting the results, we report
the asymptotic efficiency bounds in terms of standard dewiatwhich are scaled in order to correspond
to a sample of siz&” = 100. Such a sample size is realistic e.g. for an application mitimthly data on
corporate default counts. We find that the efficiency boume&timating parameterfrom the nonlinear
cross-differencing restrictions is such tW = 0.0165, whereX .. denotes the lower-right element
of the (2, 2) matrix X, and the efficiency bound from the linear cross-differegemstrictions is such that
V/2:./T = 0.0175. The informational content of nonlinear restrictions reeisithe standard deviation for
estimating parameterof more thart percent in the considered DGP.

In Figure 1 we investigate the efficiency loss incurred whesingle argument is used in the cross-
differencing nonlinear restrictions instead of the comtim set. We display the scaled standard deviation
\/ X1 (u)/T as afunction of the argumentin the admissible set, whek&{" (u) is the GMM asymptotic
variance for the nonlinear cross-differencing restrig$iavith a single argument. The corresponding
curve is U-shaped, lies above the horizontal line for VW corresponding to the GMM efficiency
bound, and has a minimum near= —0.1. The loss of information when the optimal argumenis
adopted is small. However, this optimal argument dependhemGP and is unknown to the econo-

metrician. In contrast, the loss of information can be laareother argument values, especially at the
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boundaries of the admissible set. The cufy&?',.(u)/T intersects the horizontal line defined by the effi-
ciency bound\/w from linear cross-differencing in argument= 0. In fact, the asymptotic variance
¥{"(u) is not defined for argument = 0 because the moment condition for that argument is degenerat
equal to zero. Howeved!" (u) tends toX* asu — 0 because the first-order expansion of the nonlin-
ear cross-differencing restrictions for smallields the linear cross-differencing restrictions as sieen
Section 6.2.

In Figure 2 we display the scaled asymptotic standard dewiat/ x5’

2,cc

(0,u)/T, which corresponds
to the joint use of the linear cross-differencing restons (i.e., argumenrt in the limit sense) and the
nonlinear cross-differencing restrictions for arguments a function ofu. This analysis is useful to
understand which argument values in the nonlinear crdéseincing restrictions are most informative
when usedadditionally to the linear cross-differencing restrictions. We find thalues close ta; =
—0.20 are the most informative in this incremental measure, ardctrresponding GMM asymptotic
variance is very close to the efficiency bouxig. Moreover, this finding shows that a small number of
arguments for the cross-differencing restrictions - ifielosen - convey most part of the information in
the continuum of conditional moment restrictions, at Iéasthe considered GDP. The curve in Figure 2
reaches the horizontal line corresponding to the efficiéeynd from linear cross-differencing restrictions
for argument: tending ta), oru tending to the boundaries of the admissibleisgt. and—oc (not shown),
because in those cases the additional information prowngledtgument is small.

In Figure 3 we study the patterns of the GMM efficiency bourmseistimating the autoregressive
coefficiente, as functions of the value of parametein the DGP. Specifically, we display the values of
the scaled efficiency boundg’>../T and+/%z./T from nonlinear and linear cross-differencing restric-
tions, respectively, as functions of parameter valirethe DGP. Both curves feature an inverted U-shape,
which means that the GMM asymptotic variance for estimapiagmeter: gets smaller either for values
of ¢ close to0, or for values close td. A naive analogy with the linear autoregressive proceskowit
unobservable effects offers an interpretation for the tlaat the accuracy for estimating the autoregres-
sive coefficientc increases when the process is more persistent. The difiefggtween the two curves
in Figure 3 is bigger for small values of For those DGPs, the contribution of the nonlinear cross-
differencing restrictions is more important. For instanice values ofc below 0.20, say, the nonlinear
cross-differencing restrictions reduce the asymptotiogard deviation of about%, or more, compared

to the linear restrictions.
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To summarize, the main findings of our numerical illustrasi@are: (i) the continuum of nonlinear
cross-differencing restrictions has a significant contidn for asymptotic efficiency compared to the
finite set of linear cross-differencing restrictions, (he incremental informational content of nonlinear
restrictions is bigger for argument values close to - bued#nt from -0, and (iii) the GMM efficiency
bound is well approximated even with a small number of whligen argument values, such as two or

three.

B.3.3 Proofs
i) Proof of equation (b.16)

By the orthonormality of the eigenfunction basis, we have:

Cov (gt,j(ﬁo)agt,k(ﬁo)’%—hﬁ) = / / SDt,j(U)’Qt(u,ﬁ)wt,k(ﬁ)dﬂ(u)dﬁ(ﬂ) = <90t,j>At80t,k> = Atj05 ks
UJU
whered; , = 1if j = k, and= 0, otherwise, and:
09y | Ohe(Bo, u
B2y ] = [ utrs [Py ante = (o 00,
B U ap

Then, equation (b.16) follows from equation (b.14).

i) Proof of Proposition 9, first equality

The first equality in Proposition 9 follows from the definitiof > (Definition 5), the expression of ;

in equation (b.16), and the fact that we can apply the Leb#Esglominated convergence Theorem for
J

1 . i,
Z )\_<Dt7 ©1.5)(prj, Di) | is positive
t?j

J — oo in equation (b.16) under Assumption SM.4. Matfx

j=1
‘1
Z ~—(Di; rj) (e Di)
= A
0 for j, P-a.s. This impliesD,£ = 0in L*(U, ), P-a.s, and hencé = 0 by Assumption SM.4 i). Thus,
J
. 1
the inverse of% [Z - (Di o) D)

j=1 t.J

definite. Indeed, if'F ¢ = 0 for avectorg € RP, then we gety; ;, Di&) =

exists and is positive definite.

iii) Proof of Proposition 9, second equality

Assumption SM.4 ii) implies that:

(e e}

|
> 5 {frg D) < o0, P—as, (b.25)
t,j

J=1
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foranyk = 1,...,p. SinceN (A4}t = N(A)*t = L*U,n) by the self-adjoint property of opera-
tor A; and Assumption SM.3, wher&/(-) denotes the null space of a matrix, the summability condi-
tion in (b.25) implies thatD, ;, is in the range of operatot,, P-a.s., for anyk, by the Picard theorem
[see e.g. Kress (1999)]. The range of operafpris a subspace of vector spaéé(U, ) known as

the Reproducing Kernel Hilbert Space (RKHS). Under Assump8&.4, A, D, exists and is equal to
= 1

A7'D, = Z — (1, D))oy ;. Thus, we have:
j=1 Mg ’

[e.e]

_ 1
(Dy, A7'Dy) = Z V<Dt7 01,50 (Prgs D)

j=1 »J

which yields the second equality in Proposition 9.

iv) Proof of Equation (b.19)

From (b.18) we have

99:(60)  TOh(o, )
o555 = ([ e (B o)
— E[(A;'D,, D))] = E[(D,, 4D, (b.26)
sinceA; ! is self-adjoint on the RKHS, and:
Elg(Bo) (o)) = E[ / / zt<u>’E[ht<@o,u)htwo,a)'@,ﬂ]zxa)dw(u)dw(a)} (.27)

= LK {/U /U zt(u)’Qt(u,ﬁ)zt(ﬁ)dw(u)dﬂ(&)} = E[(z, Aiz)] = E[(Dy, A7 Dy)].

Thus, from equations (b.26) and (b.27) and Proposition@agymptotic variance of the GMM estimator

based on the unconditional moment restrictiog; (5,)] = 0 is:

E {595;5,0)] E[g:(50)g:(50)| E [8gta(§o)/

which proves equation (b.19).

} — (BUDw A7 DY) =5,

V) Proof of Proposition 10

We use an argument similar to Singleton (2001), Section duteise grids,,,, m = 1, ..., M, to approxi-

mate the integral in (b.18) and define the function:

1 M

giw(ﬁ) = M Zt(“m)/ht(ﬁ7um)vma

m=1
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whereu,, is the multi-dimensional volum of subrectanglg, i.e., the product of the corresponding subin-
tervals lengths. LeV,, denote the asymptotic variance of the GMM estimator thas tise exactly iden-
tified unconditional moment functiog/, that is:

891{\4 (50)
ap’

| pio o [ 2] (b.29)

Vi = E [
Then, we have:
X <5 < Vi, (b.29)

in the order of symmetric matrices, where the second ingguadlds because asymptotic variankcg
corresponds to a GMM estimator that deploys the conditior@ahent restrictions for argument values,
with m =1, ..., M, using a (in general) non-optimal instrument. Now, whenrthmber of grid points\/

tends to infinity and the grid diametéy,, tends ta), we have:
Ve = %, (b.30)

because of the convergence of the Riemann sums in (b.28) wothesponding integrals in (b.26) and
(b.27) under the continuity condition in Assumption SM.@&lamn application of the Lebesgue theorem,
and using equation (b.19). Then, (b.29) and (b.30) imply — X, which concludes the proof.

vi) Proof of equations (b.22) and (b.23)

Let us first prove the expression of functiéh given in equation (b.22). We use the definition/of in

(b.15) and thé: — 1)-th component of the gradient of the moment function in (b.21

ah ) uw\ ./ u\ o/ (7 / u\ ./
PR )  —exp{uns (1= e )1 = )2 — explugna + (1= )AL )L
i—1

wherei = 2,3, ...,n. From equation (6.4) evaluated at the true parameter vaduleawve:
Elexp(wyis)| fe; ye-1, 2] = exp{(f + 2{,60)(e" — 1)}. (b.31)

Then, we get:

ah ,U u u / /
B (P0) ] = —explhlet - DY - D - A
i—1
i.e. in vector notation:

£ {Ght(ﬁo,u)

o vy “”—} = —exp{fi(e" = D}(e" — DAz
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By the Law of Iterated Expectation, we get:

D) = B8 | s ] ] = (e = DB [oxp{le” = s, A

which yields equation (b.22) using the definition of the atindal Laplace transforntI/{.

Let us now prove the expression for matfix(u, @) in equation (b.23). From the definition in (b.12),

the (i — 1, j — 1) element of matrixX2,(u, @) is given by:

@]y = B |(Re(Bor )i (Re(Bo, @)1y, w0
= F [Hi,t(ﬁmu)Hj,t(ﬁmﬂﬂh: ﬁ] - K |:Hi,t(BO7U)H1,t(507a)|£a ﬂ}
B [Hy (B, w) o (B @)lyr, 2| + B [y o(Bo, ) Hya (B, @)y, e

fori,j = 2,3, ...,n. To compute these conditional expectations, we use:

E [Hi,t(ﬁm w)Hi 1 (Bo, )| fi, Y1, ﬁ} = Blexp{(u+a@)yi} fr, g1, 2 exp{(2 — e" =€)z} ,Fo}
= exp{(fi + 2,0) (""" = 1) + (2 — " — ")z} o}

= exp{(e" — 1)(e" = 1)z, Bo + fe(e"" = 1)},

for all 7, where the second equality follows from (b.31), and:

B [HigBo, ) Hyg (B, D) oo pr, o] = B [HioBo )\ o o] B [H( 0) i s,

= exp{file" +¢" —2)},
for i # j. Then, by the Law of Iterated Expectation, we get:
B | Hiol(Bo, w) Hia(Bo, i)y ze| = exp{(e” = 1)(e” = 1)} Bo} ] (7 — 1),
for all 7, and:
B | Hial(Bo, ) Ha By, W)lyer, ] = Wl (e" + " —2),
for i # j. Thus, the diagonal terms of mattik (u, o) are:
[, @)1 = W = 1) (exp{(e" = 1)(e" = 1)z}, o} + exp{(¢" = 1)(e" — 1)z ,60})
—Q\IJ{(GU +et —2)
= wi(u, @) + wie(u, @),
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and the out-of-diagonal terms are:
[Qu(u, @)1 jor = Ul ("™ — D) exp{(e" — 1)(e" — 1)z} ,Bo} — U/ (" + €™ — 2) = w4 (u, @)

Using the matrix notation, we get equation (b.23).
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Figure 1: Efficiency loss for nonlinear cross-differencwigh a single argument.
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The blue curve displays the scaled asymptotic standarchtiewi, />9"

1,cc

(u)/T for estimating the autoregressive parameter

in the Poisson count panel data model with stochastic tifieetedis a function of argument whereX?"

1,cc

(u) is the lower-right
element in the asymptotic variance-covariance matrix efédfficient GMM estimator for parametér = (a, ¢)’ using the
nonlinear cross-differencing conditional moment retitsits (6.5) with a single argument and7” = 100. The horizontal red
dashed line at value/m corresponds to the GMM efficiency bound for estimating patame using the nonlinear cross-
differencing restrictions (6.5) for all admissible reayaments.. The horizontal red dotted line at valyg>:, /T corresponds
to the GMM efficiency bound for the linear cross-differergcgonditional moment restrictions (6.6). The DGP is as intiSac

B.3.2i) withc = 0.5 for n = 25.
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Figure 2: Incremental informational content of nonlinedrss-differencing restrictions.
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The blue curve displays the scaled asymptotic standardti@vi, /3"

2,cc

(0,u)/T for estimating the autoregressive parameter

c in the Poisson count panel data model with stochastic tiffecteis a function of argument, whereXJ"

2,cc

(0,u) is the
lower-right element in the asymptotic variance-covar@antatrix of the efficient GMM estimator for parameter= («, ¢)’
using jointly the linear cross-differencing restrictigi@s6) and the nonlinear cross-differencing restrictigh&) with a single
argumentu, and7 = 100. The horizontal red dashed line at valq)ém corresponds to the GMM efficiency bound
for estimating parameterusing the nonlinear cross-differencing conditional mohrestrictions (6.5) for all admissible real
arguments:. The horizontal red dotted line at valm corresponds to the GMM efficiency bound for the linear cross-

differencing conditional moment restrictions (6.6). Th&Pis as in Section B.3.2 i) with= 0.5 for n = 25.
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Figure 3: Patterns of the efficiency bounds as functionse#htiitoregressive parameter
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This Figure displays the patterns of the GMM efficiency baufat estimating the autoregressive coefficieint the Poisson
count panel data model with stochastic time effect fromdimend nonlinear cross-differencing restrictions, retpely, as a
function of the parameter valuein the DGP. The solid red line displam as a function of parameter valdédn the
DGP, wherex,.. is the lower-right element of the GMM efficiency bound matfiax estimating parametet = («, c¢)’ using
the continuum of nonlinear cross-differencing conditiom@ment restrictions in (6.5), arill = 100. The dashed blue line
displays,/>;./T as a function of, whereX?, is the lower-right element of the GMM efficiency bound matrsing the linear

cross-differencing conditional moment restrictions it6§6 The DGP is as in Section B.3.2 i) far= 25.
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